A REVIEW ON PLANT-BASED NANOSPONGES FOR TOPICAL DRUG DELIVERY
Abstract
Topical drug delivery has emerged as a key strategy for localized and controlled therapeutic interventions. Traditional systems such as ointments and creams often suffer from limitations, including poor skin permeation, uncontrolled drug release, and adverse effects like irritation and dermatitis. Nanosponges (NSs), a novel class of porous, polymeric nanocarriers, offer a promising alternative by enabling enhanced solubility, stability, biocompatibility, and sustained release of both hydrophilic and hydrophobic drugs. Various preparation methods—such as solvent methods, emulsion solvent diffusion, ultrasound-assisted synthesis, and melt techniques—allow flexible design of nanosponge systems tailored to specific therapeutic needs.
Particularly, plant-derived bioactive compounds encapsulated into nanosponge carriers have shown improved bioavailability, stability, and therapeutic efficacy, addressing challenges of poor solubility and low absorption. Studies highlight successful applications of nanosponge formulations in antifungal, anticancer, antimicrobial, antidiabetic, anti-psoriatic, and wound-healing therapies. Despite their potential, nanosponge systems face limitations such as dose dumping, scalability issues, and inability to encapsulate larger biomolecules.
This review explores the fundamentals of nanosponge technology, preparation methods, characterization, and applications, with special emphasis on plant-based nanosponge formulations. Future prospects include integrating green nanotechnology, targeted drug delivery, and clinical translation for improved therapeutic outcomes.
Keywords
Topical drug delivery, nanotechnology, nanosponges, emulsion solvent diffusion, ultrasound-assisted synthesis, bioactive compounds, bioavailability, targeted drug deliveryHow to Cite
References
• Abou Taleb, S., Moatasim, Y., GabAllah, M., & Asfour, M. H. (2022). Quercitrin loaded cyclodextrin based nanosponge as a promising approach for management of lung cancer and COVID-19. Journal of Drug Delivery Science and Technology, 77, 103921.
• Aboushanab, A. R., El-Moslemany, R. M., El-Kamel, A. H., Mehanna, R. A., Bakr, B. A., & Ashour, A. A. (2023). Targeted fisetin-encapsulated β-cyclodextrin nanosponges for breast cancer. Pharmaceutics, 15(5), 1480.
• Ahmed, M. M., Fatima, F., Anwer, M. K., Alshahrani, S. M., Alalaiwe, A., & Katakam, P. (2019). Biosynthesis, characterization and anti-microbial activity of silver nanoparticle based gel hand wash. Green Processing and Synthesis, 8(1), 577-583.
• Ahuja, A., & Bajpai, P. Invitro, Ex Vivo Permeation of Chinese Lemon Grass Nanosponges Loaded Herbal Gel and Evaluation of Antifungal and Antimicrobial Potential. Invitro, Ex Vivo Permeation of Chinese Lemon Grass Nanosponges Loaded Herbal Gel and Evaluation of Antifungal and Antimicrobial Potential.
• Aldawsari, H. M., Badr-Eldin, S. M., Labib, G. S., & El-Kamel, A. H. (2015). Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: In vitro/in vivo evaluation. International journal of nanomedicine, 893-902.
• Allahyari, S., Trotta, F., Valizadeh, H., Jelvehgari, M., & Zakeri-Milani, P. (2019). Cyclodextrin-based nanosponges as promising carriers for active agents. Expert opinion on drug delivery, 16(5), 467-479.
• Amani, F., Rezaei, A., Kharazmi, M. S., & Jafari, S. M. (2022). Loading ferulic acid into β-cyclodextrin nanosponges; antibacterial activity, controlled release and application in pomegranate juice as a copigment agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 649, 129454.
• Amol Dombe, S., & Jaykumar Shirote, P. (2023). Phytonutraceuticals in cancer prevention and therapeutics. Current Nutrition & Food Science, 19(3), 209-228.
• Anwer, M. K., Mohammad, M., Ezzeldin, E., Fatima, F., Alalaiwe, A., & Iqbal, M. (2019). Preparation of sustained release apremilast-loaded PLGA nanoparticles: In vitro characterization and in vivo pharmacokinetic study in rats. International journal of nanomedicine, 1587-1595.
• Batheja, P., Sheihet, L., Kohn, J., Singer, A. J., & Michniak-Kohn, B. (2011). Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. Journal of controlled release, 149(2), 159-167.
• Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z., & Corona-Rangel, M. L. (2017). Quitosano: Un polisacárido antimicrobiano versátil para frutas y hortalizas en poscosecha-una revisión. Revista Chapingo. Serie horticultura, 23(2), 103-122.
• Bhowmik, D. (2012). Recent advances in novel topical drug delivery system. The pharma innovation, 1(9).
• Bolmal, U. B., Manvi, F. V., Kotha, R., Palla, S. S., Paladugu, A., & Reddy, K. R. (2013). Recent advances in nanosponges as drug delivery system. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 6(1), 1934-1944.
• Butani, D., Yewale, C., & Misra, A. (2014). Amphotericin B topical microemulsion: formulation, characterization and evaluation. Colloids and Surfaces B: Biointerfaces, 116, 351-358.
• Challa, R., Ahuja, A., Ali, J., & Khar, R. (2005). Cyclodextrins in drug delivery: an updated review. Aaps Pharmscitech, 6, E329-E357.
• Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in pharmacology, 10, 1614.
• Darandale, S. S., & Vavia, P. R. (2013). Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. Journal of inclusion phenomena and macrocyclic chemistry, 75, 315-322.
• Dombe, S. A., & Shirote, P. J. (2025). Physicochemical Characterization, Drug Release, Stability, and Cytotoxicity of Cross-Linked Curdlan-Based Nanosponges for α-Amyrin and Higenamine Delivery. Turkish Journal of Pharmaceutical Sciences, 22(3), 178.
• Donato, I. D., & Lazzara, G. (2012). Porosity determination with helium pycnometry as a method to characterize waterlogged woods and the efficacy of the conservation treatments. Archaeometry, 54(5), 906-915.
• Duchěne, D. E. N., Vaution, C., & Glomot, F. (1986). Cyclodextrins, their value in pharmaceutical technology. Drug development and industrial pharmacy, 12(11-13), 2193-2215.
• Guernelli, S., Cariola, A., Baschieri, A., Amorati, R., & Meo, P. L. (2020). Nanosponges for the protection and release of the natural phenolic antioxidants quercetin, curcumin and phenethyl caffeate. Materials Advances, 1(7), 2501-2508.
• Hussain, A., Samad, A., Singh, S. K., Ahsan, M. N., Haque, M. W., Faruk, A., & Ahmed, F. J. (2016). Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug delivery, 23(2), 642-657.
• Ibrahim, B. M., Darwish, A. B., Taleb, S. A., Mourad, R. M., Yassen, N. N., Hessin, A. F., ... & Mohammed, M. A. (2024). Appraisal terpenoids rich Boswellia carterri ethyl acetate extract in binary cyclodextrin oligomer nano complex for improving respiratory distress. Scientific Reports, 14(1), 16779.
• Iriventi, P., & Gupta, N. V. (2020). Development and evaluation of nanosponge loaded topical herbal gel of wrightia tinctoria. International Journal of Applied Pharmaceutics, 12(1), 89-95.
• Iriventi, P., Gupta, N. V., Osmani, R. A. M., & Balamuralidhara, V. (2020). Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. DARU Journal of Pharmaceutical Sciences, 28(2), 489-506.
• Jadhav, P. A., Jadhav, S., Kamble, S., & Chavan, P. (2019). Formulation and evaluation of nanosponges containing Murraya koenigii extract for burn wound healing. Am. J. PharmTech Res, 9(01), 182-214.
• Jyoti, P., Tulsi, B., Popin, K., & Chetna, B. (2016). An innovative advancement for targeted drug delivery: Nanosponges. Indo Global J Pharm Sci, 6(2), 59-64.
• Kang, E. J., Baek, Y. M., Hahm, E., Lee, S. H., Pham, X. H., Noh, M. S., ... & Jun, B. H. (2019). Functionalized β-cyclodextrin immobilized on Ag-embedded silica nanoparticles as a drug carrier. International journal of molecular sciences, 20(2), 315.
• Kapileshwari, G. R., Barve, A. R., Kumar, L., Bhide, P. J., Joshi, M., & Shirodkar, R. K. (2020). Novel drug delivery system of luliconazole-Formulation and characterisation. Journal of Drug Delivery Science and Technology, 55, 101302.
• Kaur, M., Nagpal, M., Singh, M., Singh, T. G., Aggarwal, G., & Dhingra, G. A. (2020). Improved antibacterial activity of topical gel-based on nanosponge carrier of cinnamon oil. BioImpacts: BI, 11(1), 23.
• Kumar, S., Pooja, Trotta, F., & Rao, R. (2018). Encapsulation of babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics, 10(4), 169.
• Mady, F. M., & Mohamed Ibrahim, S. R. (2018). Cyclodextrin-based nanosponge for improvement of solubility and oral bioavailability of Ellagic acid. Pakistan journal of pharmaceutical sciences.
• Martínez-Richa, A., & Silvestri, R. (2012, April). Determination of phase content in multiphase polymers by solid-state NMR techniques. In Materials Science Forum (Vol. 714, pp. 51-56). Trans Tech Publications Ltd.
• Mashaqbeh, H., Obaidat, R., & Al-Shar’i, N. (2021). Evaluation and characterization of curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. Polymers, 13(23), 4073.
• Nor, S. B. M., Woi, P. M., & Ng, S. H. (2017). Characterisation of ionic liquids nanoemulsion loaded with piroxicam for drug delivery system. Journal of Molecular Liquids, 234, 30-39.
• Panda, S., Vijayalakshmi, S. V., Pattnaik, S., & Swain, R. P. (2015). Nanosponges: A novel carrier for targeted drug delivery. Int J PharmTech Res, 8(7), 213-24.
• Radaic, A., de Jesus, M. B., & Kapila, Y. L. (2020). Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. Journal of Controlled Release, 321, 100-118.
• Ramnik, S., Nitin, B., Jyotsana, M., & Horemat, S. N. (2010). Characterization of cyclodextrin inclusion complexes–a review. J Pharm Sci Tech, 2(3), 171-183.
• Rao, M. R., & Bhingole, R. C. (2015). Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution. Drug development and industrial pharmacy, 41(12), 2029-2036.
• Rezaei, A., Varshosaz, J., Fesharaki, M., Farhang, A., & Jafari, S. M. (2019). Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. International journal of nanomedicine, 4589-4599.
• Shah, H. S., Nasrullah, U., Zaib, S., Usman, F., Khan, A., Gohar, U. F., ... & Al-Harrasi, A. (2021). Preparation, characterization, and pharmacological investigation of withaferin-A loaded nanosponges for cancer therapy; in vitro, in vivo and molecular docking studies. Molecules, 26(22), 6990.
• Sharma, K., Kadian, V., Kumar, A., Mahant, S., & Rao, R. (2022). Evaluation of solubility, photostability and antioxidant activity of ellagic acid cyclodextrin nanosponges fabricated by melt method and microwave-assisted synthesis. Journal of Food Science and Technology, 59(3), 898-908.
• Sharma, R., & Pathak, K. (2011). Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharmaceutical development and technology, 16(4), 367-376.
• Sherje, A. P., Dravyakar, B. R., Kadam, D., & Jadhav, M. (2017). Cyclodextrin-based nanosponges: A critical review. Carbohydrate polymers, 173, 37-49. Sherje, A. P., Dravyakar, B. R., Kadam, D., & Jadhav, M. (2017). Cyclodextrin-based nanosponges: A critical review. Carbohydrate polymers, 173, 37-49.
• Shinde, G., Rajesh, K. S., Devang, B., Bangale, G., Umalkar, D., & Virag, G. (2011). Current status of colloidal system (nano range). LIPOSOME & NANOTECHNOLOGY, 61.
• Singh, D., Soni, G. C., & Prajapati, S. K. (2016). Recent advances in nanosponges as drug delivery system: a review. Eur J Pharm Med Res, 3(10), 364-71.
• Singh, D., Soni, G. C., & Prajapati, S. K. (2016). Recent advances in nanosponges as drug delivery system: a review. Eur J Pharm Med Res, 3(10), 364-71.
• Singh, S., Kumar, A., & Sharma, D. (2022). Nanosponges novel drug delivery system: A comprehensive review. Int J Pharm Sci Rev Res, 77(2).
• Swaminathan, S., Darandale, S., & Vavia, P. R. (2012). Drug delivery| bioavailability-nanosponge-aided drug delivery: a closer look. Pharm Formul Qual, 14(5), 12-5.
• Swaminathan, S., Vavia, P. R., Trotta, F., Cavalli, R., Tumbiolo, S., Bertinetti, L., & Coluccia, S. (2013). Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. Journal of inclusion phenomena and macrocyclic chemistry, 76, 201-211.
• Trotta, F., Zanetti, M., & Cavalli, R. (2012). Cyclodextrin-based nanosponges as drug carriers. Beilstein journal of organic chemistry, 8(1), 2091-2099.
• Usman, F., Shah, H. S., Zaib, S., Manee, S., Mudassir, J., Khan, A., ... & Khan, I. (2021). Fabrication and biological assessment of antidiabetic α-Mangostin loaded nanosponges: In vitro, in vivo, and in silico studies. Molecules, 26(21), 6633.
• Varan, C., Anceschi, A., Sevli, S., Bruni, N., Giraudo, L., Bilgic, E., ... & Bilensoy, E. (2020). Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. International journal of pharmaceutics, 585, 119485.
• Vavia, P. R., Swaminathan, S., Trotta, F., & Cavalli, R. (2006, May). Applications of nanosponges in drug delivery. In Proceedings XIII International Cyclodextrin Symposium (pp. 14-17).
• Ventola, C. L. (2012). The nanomedicine revolution: part 1: emerging concepts. Pharmacy and Therapeutics, 37(9), 512.
• Wakure, B. S., Salunke, M. A., Mane, P. T., Awale, S. R., Shinde, R. D., & Eklinge, S. S. (2021). Nanosponges as Novel Carrier For Topical Delivery Of Luliconazole-An Antifungal Drug. Int. J. Of Pharmaceutical Sciences and Res, 12(10), 5570-5583
License
Copyright (c) 2025 Annapurna Ojha, Rajendra Pal Singh Rathore

This work is licensed under a Creative Commons Attribution 4.0 International License.
Individual articles are published Open Access under the Creative Commons Licence: CC-BY 4.0.